SOFTWARE.
Although the hardware of a computer ultimately determines its capacity for storing and processing information, the user seldom has occasion to deal with the hardware directly. A hierarchy of programs, which together constitute the software of the computer, intervenes between the user and the hardware.

The part of the software that is most closely associated with the hardware is the operating system. To understand the kind of tasks done by the operating system, consider the sequence of steps that must be taken to transfer a file of data from the primary memory to disk storage. It is first necessary to make certain there is enough space available on the disk to hold the entire file. Other files might have to be deleted in order to assemble enough contiguous blank sectors. For the transfer itself sequential portions of the file must be called up from the primary memory and combined with "housekeeping" information to form a block of data that will exactly fill a sector. Each block must be assigned a sector address and transmitted to the disk. Numbers called checksums that allow errors in storage or transmission to be detected and sometimes corrected must be calculated. Finally, some record must be kept of where the file of information has been stored.

If all these tasks had to be done under the direct supervision of the user, the storage of information in a computer would not be worth the trouble. Actually, the entire procedure can be handled by the operating system; the user merely issues a single command, such as "Save file". When the information in the file is needed again, an analogous command (perhaps "Load file") begins a sequence of events in which the operating system recovers the file from the disk and restores it to the primary memory.

In most instances an application program is written to be executed in conjunction with a particular operating system. On the other hand, there may be versions of an operating system for several different computers. Ideally, then, the same application program could be run on various computers, provided they all had the same operating system; in practice some modification is often necessary. The microprocessor recognizes a limited repertory of instructions, each of which must be presented as a pattern of binary digits. For example, one pattern might tell the processor to load a value from the primary memory into the internal register called an accumulator and another pattern might tell the machine to add two numbers already present in the accumulator. It is possible to write a program in this "machine language", but the process is tedious and likely to result in many errors.

The next-higher level of abstraction is an "assembly" language, in which symbols and words that are more easily remembered replace the patterns of binary digits. The instruction to load the accumulator might be represented LOADA and the instruction to add the contents of the accumulator might be simply ADD. A program called an assembler recognizes each such mnemonic instruction and translates it into the corresponding binary pattern. In some assembly languages an entire sequence of instructions can be defined and called up by name. A program written in assembly language, however, must still specify individually each operation to be carried out by the processor; furthermore, the programmer may also have to keep track of where in the machine each instruction and each item of data is stored.

A high-level language relieves the programmer of having to adapt a procedure to the instruction set of the processor and to take into account the detailed configuration of the hardware. Two quantities to be added can simply be given names, such as X and Y. Instead of telling the processor where in primary memory to find the values to be added, the programmer specifies the operation itself, perhaps in the form X+Y. The program, having kept a record of the location of the two named variables, generates a sequence of instructions in machine language that causes the values to be loaded into the accumulator and added.

